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Abstract

Brain ventricles (BV) are important for exploring the brain and the
central nerve system for mammals. High frequency ultrasound (HFU) is
the only rapid way to get high-resolution images for BV. In this work,
we try to segment BV from HFU images of entire mouse embryos using
deep learning method. The system includes two main parts: localization
and segmentation. A sliding window in the localization part plays the
role of attention, and a CNN classifier will determine which part contains
BV. Then a deep model will be directly applied to 3D BV sub-volumes to
get the segmentation. This deep segmentation model over-performs the
traditional segmentation method by a large margin on the 111 test set
volumes.

1 Introduction and Related work

Brain ventricle (BV) (please see Figure 1) is a Y-shape part in mammal brains
containing cerebral spinal fluid. Since the genes of mice are similar to humans
and their BV have same phenotype, doing research on BV part of mice paves
the way for doing the similar experiment on human brains. Traditionally, seg-
menting BV parts asks for the tedious labor work taking 15 minutes on average
for a expert to label slice by slice of 3D volumes, which is time-consuming and
expensive.

Recently, an image processing method [1,2,3], Nested Graph Cut (NGC),
appeared to solve this problem. In those work, they had the same definitions
for nodes, edges of images, and defined the source S and sink T nodes, like graph
cut, which is one of the traditional computer vision techniques for segmentation.
Then, by solving the energy function designed using the prior knowledge, NGC
can segment nested structure very well, as Figure 1 shows. However, the prior
NGC based work only trained on 36 BV volumes obtained before, the perfor-
mance of it decreases quickly when applied on our larger dataset which contains
259 training and 111 test images. Also, for getting a good result, NGC relies
on the expertise knowledge for BV structure, which limits the application area
of this method.

From 2012, computer vision field has been pushed forward fast by the ap-
plication of deep neural network. CNN [4, 5], inspired by the visual system of
animals, has dominated the area and outperforms traditional computer vision
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Figure 1: (a) a slide of a 3D BV image. (b) the nested structure of mouse
embryo. (d) the BV segmentation result of NGC method [3]. (e) overall nested
structure segmentation result of NGC method. (c)(f): NGC can correctly seg-
ment the nested structure and automatically add the boundary between different
parts.

methods in different problems. Drawing on shared parameters and the hierarchy
structure, CNN does not depend on the prior knowledge anymore. Instead, it
can extract and learn the features from images automatically. Since then, more
and more successor models [6,7,8,9] approach or surpass the human performance
on classification tasks.

Different from classification, which assigns an entire image to various cate-
gories, segmentation needs to associate each pixel/voxel with different classes or
objects. J.Long et.al [10] first applied CNN to semantic segmentation. In their
fully convolutional network (FCN), all the fully connected layers are replaced
by the convolutional layers, and high-resolution and low-resolution feature maps
are combined together to fuse coarse, semantic and local, appearance informa-
tion. They also designed a deconvolutional layer to map the low-resolution
feature map to the one of original image size, which is in order to predict the
class pixel by pixel.

For biomedical image, due to the fact that there is always the issue of privacy
and needs expertise knowledge to label, the number of it is scarce. Based on fully
convolutional network mentioned above, U-Net [11] is a symmetric structure,
with several up-sampling layers added. Like FCN, U-Net concatenates local and
global information together; while unlike FCN, it divides the whole structure
into several stages, in each stage, several convolutional layers are added, and
excessive data augmentation are utilized to make up for the little data size.

U-Net was the state-of-the-art model for 2D biomedical image segmentation
task. However, in biomedical image analysis, 3D images are more common. To
convert U-Net to solving 3D image segmentation, V-Net [12] adapts each kernel
into 3D and still has down-sampling and up-sampling phases. In particular,
like [8], V-Net needs to learn the inter-layer residual functions, and for the loss
function, it uses Dice loss function which intuitively, evaluates on the whole
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sub-volume instead of the single voxel.
In this work, we designed a V-Net like network to segment BV part from the

whole mouse embryo HFU 3D volumes. Here, since BV part only occupies a
extremely small part of the whole embryo (on average, 0.335%, which is smaller
than the proportion in the dataset V-Net applied on), we cannot apply V-
Net directly to our task. To get a sub-volume whose BV part is much larger,
a sliding window cuts the original volume into several sub-cubes and then a
classifier detects whether each cube contains BV with certain confidence. After
obtaining BV-covered subvolumes, a deep segmentation network segments the
BV part from each of them.

2 The Architecture

2.1 Localization

Like [13], for localization, we first apply a 3D sliding window to get ”proposals”
of the 3D image, and then use the trained classifier to determine whether it the
”proposal” contains the whole BV part.

Taking advantage of the observation that the maximum size of BV is 128
pixels, we fix the size of the sliding window as 128 × 128 × 128, in order to
contain the largest BV. When any side of the whole embryo image is less than
128, we zero pad that axis to 128. Due to the limited computing resource, we
use sliding windows of 64 × 64 × 64, and then change sub-volumes containing
entire BV back to the original size.

Figure 2: Architecture for localization. Note the input is 64 × 64 × 64. After
localization, they need to be upsampled by the factor of 2 to recover the original
size. The last layer has softmax function to get the classification probabilities
for positive and negative category.

For the classifier, VGG net [7] is adapted to 3D and used for classifying
each subvolume extracted from the entire image as contained the whole BV or
not. As Figure 2 shows, there are eight conv layers and three fully connected
layers in total, and each conv and fully connected layer (except the last layer) is
followed by ReLU non-linearity and batch normalization. Between the network,
2 × 2 max pooling layers is for downsampling feature maps. In order to avoid
overfitting, dropout layers are added to each layer except the last one, with the
rate of 0.15, and after the first fully connected layer, the rate becomes 0.4. For
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getting the probability of each subvolume, the last layer is 2 dimensional, and
followed by a softmax layer. The kernel size of each conv layer is 3 and stride
is 1 for extracting the feature maps.

2.1.1 Segmentation

After getting the candidate ”proposal” box, we feed them into a V-Net like net-
work to get the final segmentation of BV. Please note that after the localization
part, we upsample the box from 64× 64× 64 back to 128× 128× 128.

Figure 3: Architecture for Segmentation. There are 7 LRP layers to add the
depth of the network. Each output from the compression stage is concatenated
to the corresponding decompression stage. The last layer uses sigmoid function
to get the probability for each voxel.

In Figure 3, we can see that similar to V-Net, our network is also divided
into several stages, and for each stages, the conv layers instead of pooling layers
to downsample feature maps. The trick combining the coarse and finer feature
map is also used here to get a better performance, since in mouse embryo images,
there are always some difficult cases, for example, the border of the BV is vague.
Without the global context information, even a human expert cannot make sure
whether some part belongs to BV or not. Also, for solving this problem, we
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add several low resolution processing (LRP) layers for the lowest stage, whose
receptive field is largest compared to the prior layers.

Since our computing resource is limited and LRP layers are compute-dense,
we use spatially separated / cross constrained filter structures for LRP layers.
Basically, spatially separated constrained filter uses 1D conv kernel for each axis
(e.g. k × 1 × 1 for x-axis) and then sums up the three feature maps obtained
by convolving 1D kernels with the whole volume. Due to this trick, we succeed
reducing the total parameters from 15M to 2M, avoiding sever overfitting.

In the whole network, the kernel size for every conv layers is 7, and the stride
is 2 for downsampling convolution layers and upsampling deconvolution layers.
For the last layer, we have one output channel for each voxel, and use sigmoid
function to get the probability for each voxel prediction.

3 Experiment

3.1 Dataset and Data Augmentation

For segmentation, we used Amira [14] to label 370 mouse embryo 3D HFU
volumes, whose size is varied from 150×161×81 to 300×281×362. Each voxel
stands for 50× 50× 50 µm. According to the empirical 7:3 division, the whole
dataset is divided into 259 training data and 111 test data.

As mentioned before, biomedical image analysis always encounters the prob-
lem of extreme shortage of training data. As have down in previous work [11,
12], we augment the training data on the fly for each training epoch. Here,
flipping and rotation are considered. For each image, the probability of flipping
or rotation is 0.7. Each image can be flipped along x, y, z or any combination
between them, and rotated along each axis by 90, 180 or 270 degree. The same
augmentation process is applied for both localization and segmentation.

3.2 Training

3.2.1 Localization

Since the proportion of BV is extremely small compared to the entire mouse
embryo body, the number of the negative samples, which does not contain the
entire BV, is much larger than that of the positive samples. Therefore, to
extract positive and negative training samples for the classifier from the original
259 training volumes, the sliding window has different strides: 3 for extracting
negative and 2 for positive samples. Here, we define the positive samples as the
128 × 128 × 128 subvolume containing at least 99% of BV, while the negative
samples only contains less than 80% of BV part. Others are considered as
ambiguous. Due to the shortage of computing resource, we downsample the
whole image by the factor of 2, and then use 64× 64× 64 sliding window.

Cross-entropy loss is used for improving the classification accuracy. As men-
tioned before, the number of negative samples is far more than that of positive
samples, so we add the corresponding weights ( 1 for negative, 1.2 for positive)
to the cross-entropy items. With the loss function, we trained the classifier for
5 epochs with SGD, momentum 0.9, and weight decay rate 0.00001, and set the
initial learning rate to 0.01 and degrade by 0.1 after the third epoch. 200 is
used for mini-batch size.
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3.2.2 Segmentation

Similar to V-Net [12], we use Dice based function (DSC), which is defined as
follows, for loss function.

DSC =
ε+ 2Ŷ Y

ε+
∑

ŷ∈Ŷ ŷ +
∑

y∈Y y

where ŷ ∈ [0, 1], denoting the predicted probability for each voxel, y ∈ {0, 1},
the groundtruth label for each voxel, and ε = 1 × 10−4 is used for smoothness
and numerical zero issues. The DSC is measured on the whole volume instead
of the single voxel.

After extracting from the original 259 training images with 128× 128× 128
sliding window with at least 97% BV part, we get 64K 128× 128× 128 training
subvolumes for the segmentation network. Then we trained it for 5 epochs with
SGD of momentum 0.9, weight decay 0.0001, initial learning rate 0.01, and
degrades by 0.1 after the third epoch. In addition, 4 subvolumes are used for
each mini-batch.

3.3 Testing

For localization part, stride 3 is utilized for getting the candidate volumes for test
image, and if the probability predicted by the classifier is more then 95%, then
we define it as containing the whole BV. Because of the random initialization
and augmentation, we trained 3 different models with the same aforementioned
architecture and methods, tested on them, and used the arithmetic mean of
three models to get the ultimate test accuracy.

After getting the candidate subvolumes which are considered as containing
the whole BV, we upsampled them by the factor of 2 and feed them into the
segmentation network, if the probability for each voxel is more than 92%, it is
belonged to BV part.

4 Results and Discussion

Figure 4 shows the segmentation results. For each line, the gray images are
slides along three axis respectively, the red part is the segmentation result for
each slide, and 3D mesh is the final result. We can see that the performance
of the model is good enough to adapt to different BV orientations, sizes and
postures.

To get the accuracy of the segmentation, we still use DSC to evaluate the
final result. In the experiment, prior NGC-based method [3] was used as the
baseline, then for the deep segmentation method, we used 2 models: 1) the
model mentioned before (single) 2) three localization model combined together,
computer the arithmetic mean, then use the V-Net like network to segment
(combined). From Table 1, we can see that compared to the baseline, the deep
learning method has a greatly better performance due to the excellent feature
extraction ability of CNN.

Although the deep segmentation method has the performance gain by a
large margin, there are still several shortages for this system to be improved
for the future work. First, like R-CNN [13], the localization needs to compute
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Figure 4: Segmentation results. The first three columns are slides from different
axis, respectively. Red parts belongs to BV. The 3D mesh on the last column
is the 3D combination from the whole volume.

Table 1: DSC for different models

Models Mean DSC
NGC-based 0.7119
Deep Segmentation (single) 0.8911
Deep Segmentation (combined) 0.8956

the convolution over different subvolumes. This does not take advantage of
[15, 16, 17], which shares one convolution computing for the whole image, thus
greatly reduce the inference time. In addition, transfer learning methods could
be explored to see whether we can use state-of-the-art model V-Net architecture
to this problem.

5 Conclusion

In this work, we proposed a deep learning based segmentation method for brain
ventricles in 3D mouse embryo images. Due to the parameter sharing and
hierarchy architecture, this method outperforms the state-of-the-art traditional
NGC model by a large margin. DSC loss does not need to re-weight when the
foreground and background samples are extremely unbalanced and avoid the
network stuck in the local minima. Our future work will focus on speeding up
the inference process, which will draw on the idea in the state-of-the-art object
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detection algorithms.
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